
Floating Point Analog Channels
Data without scaling

Feb 10, 2000

Current support for floating point data from an IRM node is based upon underlying raw 16-
bit values for readings, settings nominal and tolerance values. This note explores possible 
approaches to support of raw data that is already in floating point form. It can be computed in 
a local application, or it can be found in shared memory that is maintained by another CPU.

Channel#
Should these data use up channel# space that is currently used by the ADATA and ADESC 

tables? If so, then there must be an additional form of ADATA that is parallel to the raw ADATA 
table, perhaps a new FDATA table. As an example, it might use 16-byte entries that can house 4 
floating point values, which can provide values for reading, setting, nominal and tolerance. 
The alarm flags and trip count could be maintained in the associated ADATA entries, but the 
usual raw data fields in those entries would not be used. The alarm scan task would have to 
notice such cases during its analog scan, perhaps by a new bit in the alarm flags, or in the CONV 
byte of the ADESC entry. In the latter case, the Alarm scan logic would have to be able to find 
the parallel table entries so it can do its alarm scanning using floating point operations. 

Another approach could be to use a different index besides a channel number. In this case an 
FDATA table would not be parallel with ADATA. Its size could be only large enough to house the 
number of floating point channels used in a node. This could fit in easily for RETDAT, because 
the listype would be different, as well as the index# being different. But for this case, the alarm 
flags would need to be kept along with the new table entries, so that 16-byte entries would not 
be large enough. If we had 32-byte entries, there would be more than enough space for the 4 
floating point values (16 bytes), the alarm flags, the trip count, a motor countdown if needed, 
and a captured floating point reading if needed. In this case, however, how can we deal with 
the need for analog descriptors? Let’s assume an FDATA table parallel to ADATA. For certain 
channels, marked via a flag bit in the alarm flags, FDATA values would be valid, but the 
corresponding ADATA values would not.

If desired, listypes 40–44 could be used to access floating point values for the special floating 
point channels. The code would need to check the flag bit to see whether it should access the 
floating point fields from FDATA, or as is done now, scale the values found in ADATA.

Alarm scanning
Check the special alarm flag bit that indicates the floating point case. If it is set, get a 

pointer to the corresponding fields in FDATA and perform the alarm checking logic using 
floating point operations.

When generating the Classic protocol alarm message output, find some way to include the 
floating point value, perhaps by overwriting the two words normally used for the raw reading 
and setting words. Whether it is important to also include the nominal and/or the tolerance 
values is debatable. Normally, only the reading word is included in the encoded alarm 
message. The alarm encoding will need to be changed accordingly to reflect the new format of 
analog alarm message.

Data access table
We will need to define a new type of entry suitable for copying floating point values 

from memory into the new FDATA reading fields. There may be additional entry types needed 



for the purpose of forming new floating point values.

Local applications
For local applications that compute values to be assigned to analog channels, another 

routine will need to be written to simply copy an array of floating point values into the 
reading fields of consecutive FDATA entries.

Settings
A new analog control type is needed to perform settings of these floating point values. 

In this case, it is unlikely that hardware will get the values. Also, the setting values will have 
to be floating point 4-byte values. Currently, there are only 3 bytes to specify the target for the 
settings. If the target is merely memory for another CPU to find, it must be specified is some 
abbreviated fashion, not as a 32-bit address. For the other CPU case, the use of a command 
queue may be useful. There already is support for such queues for other CPUs.

Analog settings sent to a co-processor queue use the AUX byte in the ADESC entry analog 
control field to specify a 3-bit co-processor number, leaving 5 bits to specify flags for the co-
processor to decode. The remaining 16 bits may be an index number to specify which thing is 
being controlled, again, something to be decoded by the co-processor.

Digital settings only have what is usually a memory pointer in the BADDR table, which has 
such an entry for each byte. But special values of this pointer are interpreted in a way that is 
not truly a memory address. Currently, high byte values of 0x80, 0x81, 0x82 mean special 
forms of encoded information to cover 1553, SRM, and PLC digital settings. It is proposed to 
use a high byte value of 0x83 to specify co-processor digital control. The other 3 bytes can be 
formatted similarly to the analog control specification. A 3-bit field gives the co-processor 
number, the remaining 5 bits of that byte specify other type info for the co-processor, and the 
other 16 bits are an index value that has meaning to the co-processor in identifying the target 
of the digital control setting.

Summary
For reading data, define a new data access table type that allows copying of memory to 

FDATA reading fields. For setting data use the co-processor interface that uses a simple queuing 
scheme for sending messages to the co-processor. Alarm scanning is done by noticing the bit 
flag in the alarm flags word that indicates that raw data is only in floating point format in 
FDATA entries, not in the usual ADATA fields.

FTPMAN
This is another topic to be addressed carefully. For continuous fast time plots, the time 

stamps are returned with a 2-byte or 4-byte data value. In this floating point case, 4-byte data 
would have to be provided in reply to a request. Some means of finding the data for a given 
channel is necessary, so that it can be copied to satisfy the request.

For snapshots, the time stamps need not be specified. To plot relative to a clock event plus 
delay, we must work out how this data can be collected. It may not be so easy, but FTPM 
already supports a number of types of digitizer interfaces, so this is just one more.

Floating Point Analog Channels p. 2


